Delaware County Health Unit Locations

Private Well Test Kits
These kits are $4 each and can be purchased at any of the locations listed below. The test kit contains two bottles: one to test for chemicals and one to test for bacteria. Instructions are included with each bottle and should be followed precisely. Drop off water samples at any of the same locations. Additional bottles are $2 each.

New Castle County
New Castle County
University Office Plaza—Chopin Building
258 Chapman Road, Suite 105
Newark, DE 19702
(302) 283-7110

Kent County
Thomas Collins Building
540 S. DuPont Highway, Suite 5
Dover, DE 19901
(302) 744-1220

Delaware Public Health Laboratory
30 Sunnyside Road
Smyrna, DE 19977
(302) 223-1520

Sussex County
Georgetown State Service Center
544 S. Bedford Street
Georgetown, DE 19947
(302) 856-5496

Did you know?
- The Office of Drinking Water monitors approximately 500 public water systems throughout Delaware.
- Delaware residents use approximately 91 million gallons of public water each day.
- About 16 percent of Delaware residents own a private well—which are not regulated by either the federal or state government.
- The Office of Drinking Water recommends that owners of private wells have their water tested annually for chemical and bacteriological contaminants. For more information on where to get testing kits in your area, contact your county health unit listed in this brochure.

For More Information Contact:
Office of Drinking Water
43 South DuPont Highway
Dover, DE 19901
(302) 741-8630
FAX: (302) 741-8631
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Description</th>
<th>Parts per million (ppm) = mg/L milligrams per liter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regulated analytes: maximum contaminant level (MCL) value. Unregulated analytes: secondary standard (SS) value.</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity is a measure of the buffering, or acid-neutralizing, capacity of water. Know the alkalinity of water when installing treatment for other water quality parameters such as pH.</td>
<td>There are no recommended alkalinity levels.</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>Chloride may adversely affect the taste, odor or color of drinking water, but does not pose any known health risk. At 250 ppm, water could taste foul.</td>
<td>(SS) 250 ppm Note: High chlorides may also indicate salt water intrusion or a failing septic system.</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>Fluoride can naturally occur in groundwater. All municipalities in Delaware are required to add fluoride to the drinking water for added dental benefits.</td>
<td>(MCL) 2.0 ppm Delaware’s optimum range for fluoride is (0.8 – 1.2 ppm). Fluoride should not exceed 2.0 ppm.</td>
</tr>
</tbody>
</table>
| Hardness | Calcium and magnesium are two minerals which make water hard. Water hardness is measured either in grains per gallon (gpg) or as calcium hardness in ppm. One grain is equal to 17 ppm. | (SS) The degrees of hardness range from soft to hard:
 - < (less than) 60 ppm: soft
 - 61-120 ppm: moderately hard
 - 121-180 ppm: hard
 - > (greater than) 181: very hard |
| Iron (Fe) | Iron is the earth’s fourth most abundant element and is found in nearly all water supplies. Iron may adversely affect the aesthetic quality of drinking water by taste, odor or color. However, iron does not pose any known health effects. | (SS) 0.3 ppm Above this level, iron may cause staining in household appliances, fixtures and laundry. At very low levels, treatment may not be necessary. |
| Nitrate (NO₃) | Nitrate occurs naturally in some ground water, as a result of fertilizer use or from a failing septic system. Since nitrates reduce the oxygen carrying capacity in the blood, they are harmful to unborn children and infants less than six months of age. In infants, the lack of oxygen causes the skin to appear blue or gray, a condition known as Blue Baby Syndrome. | (MCL) 10 ppm (Acute Contaminant) If the level is 10 ppm or less means that your drinking water meets drinking water standards. |
| Nitrite (NO₂) | Nitrites (NO₂) are not stable in drinking water and can quickly change to Nitrates (NO₃). The sources are the same and they both can cause Blue Baby Syndrome. To protect against the risk of adverse effects, the United States Environmental Protection Agency (EPA) has set the drinking water standard at 1 ppm. | (MCL) 1 ppm (Acute Contaminant) If the level is 1 ppm or less means that your water meets drinking water standards. |
| pH | pH is a numerical expression indicating the degree at which water is acidic or basic. High pH levels are undesirable since they may give the water a bitter taste. | (SS) 6.5 – 8.5 (Range of where environmental and aesthetic benefits can be achieved) Scale of 0 –14
 0 = highly acidic; 7 = neutral; 14 = highly basic |
| Sodium (Na) | The EPA suggests a guidance level for sodium of 20 ppm in drinking water for those on severely salt-restricted diets. A level of 200 ppm or less is suggested for unrestricted diets. | (SS) < (less than) 20 ppm for salt-restricted diets
 200 ppm or less for unrestricted diets |
| Sulfate (SO₄) | Sulfates are a combination of sulfur and oxygen that can be released into groundwater from soil or rock formations. | (SS) 250 ppm Higher levels may cause diarrhea. |

Guide to Understanding Your Drinking Water Results